
A User Context Management Approach for Query Personalization Settings

Marcelo Freitas, Jimmy Silva, Davi Bandeira,
Antônio Mendonça, Damires Souza

Federal Institute of Education, Science and Technology of
Paraiba (IFPB)

João Pessoa, Brazil
{marcello.dudk, jimmy.jw2, davi.bandeira,

tony2415}@gmail.com, damires@ifpb.edu.br

Ana Carolina Salgado
Center for Informatics (CIn)

Federal University of Pernambuco (UFPE)
Recife, Brazil

acs@cin.ufpe.br

Abstract— Data-oriented applications have experienced a huge
growth mainly in distributed settings. The increasing amount of
available data has made it hard for users to find the information
they need in the way they consider relevant. To help matters, a
user-centric approach may be used to enhance query answering
and, particularly, provide query personalization. In this work, we
address the issue of personalizing query answers in diverse
settings taking into account the user context. We propose a user
context management approach which includes a representational
model (as an ontology) and a context-aware service named
CODI4In. CODI4In provides the persistence and recovery of the
manipulated user context. It has been developed as a plugin
which may be coupled to any query answering system. In this
paper, we present an initial version of the developed plugin
coupled with a query answering application and some promising
experimental results we have accomplished with real users.

Keywords - Context, User Context Management, Ontology,
Query Answering Settings

I. INTRODUCTION

Personalization means tailoring a product or a medium to a
user, according to some identified user personal characteristics
[1]. Regarding query answering, the idea is to address the
amount of data available (e.g., on the Web or on a single
database) to different users by providing them with
personalized (i.e., individualized) answers, even though the
same query has been submitted. When formulating queries, the
user may be found in various contexts, and these contexts may
change every time. Meanwhile, the user himself may build his
own context, in terms of his specific interests and common
executed tasks. We argue that to provide query personalization,
it is essential to take into account the user model, and to build
the user model, we should include the user context.

Context is usually concerned with the circumstantial
elements that make a situation unique and comprehensible [2].
We define Context as a set of elements surrounding a domain
entity of interest which are considered relevant in a specific
situation during some time interval. The domain entity of
interest may be, for instance, a person (e.g., a user) or a task
(e.g., a given query). In addition, we use the term contextual
element (CE) referring to pieces of data, information or
knowledge that can be used to define the Context [3].
Regarding the user, his context (e.g., location and preferences)
can be exploited, for example, to answer queries. Thus, users at
diverse locations or having distinct preferences may expect
different answers, even from a same formulated query.

Systems which make use of context are usually called
Context-Sensitive Systems (CSS) [3]. To handle contextual
information, a CSS should include a context management
service. To allow context usage, it is also important to define
how context is represented and (possibly) persisted. Thus, our
initial effort was devoted to the definition of an ontology-based
context model, named CODI (Contextual Ontology for Data
Integration) [4]. In CODI, six domain entities were established,
as follows: user, environment, data, procedure, association and
application. Some CEs were associated to each domain entity.

In this current work, we extend the CODI ontology, by
including specific CEs related to the domain entity USER. This
ontology has been named CODI-User. The CODI-User
includes CEs regarding personal, environment and query
related concepts which are used to personalize queries. To
handle the user context, we have developed a service named
CODI4In which provides the persistence of the CEs by means
of a graph-based database. CODI4In operates as a back-end
service of a querying application, supporting the functions of
populating and accessing the database underlying the user
context ontology. We have also conducted some experiments
with real users which have shown that by considering the user
context really enhances the degree of relevancy and satisfaction
of the personalized answers.

Our contributions can be summarized as follows: (i) we
extend a context ontology with specific user CEs; (ii) we
address the management of a user context ontology using a
graph-based database as the underlying storage model; (iii) we
present a case-study coupling the CODI4In service with a
querying application and (iv) we present experiments showing
the degree of satisfaction obtained with the personalized
answers produced by considering context.

This paper is organized as follows: Section 2 proposes the
CODI4In approach; Section 3 describes the developed
CODI4In service and some accomplished experiments. Related
works are discussed in Section 4. Finally, Section 5 draws our
conclusions and points out some future work.

II. THE CODI4IN APPROACH

In this section, we present the CODI-User ontology and the
main issues underlying the CODI4In service.

A. CODI-User: The User Context Ontology

The CODI-User is a conjunction of the domain entity
USER and the CEs which are related to it. For the sake of
space, Fig. 1 describes an overview of the CEs which
characterize the USER. This view has been produced using

2012 IEEE Sixth International Conference on Semantic Computing

978-0-7695-4859-3/12 $26.00 © 2012 IEEE

DOI 10.1109/ICSC.2012.31

333

2012 IEEE Sixth International Conference on Semantic Computing

978-0-7695-4859-3/12 $26.00 © 2012 IEEE

DOI 10.1109/ICSC.2012.31

333

OntoViz, a Protégé plug-in1. Therefore, User is a sub-concept
of Domain Entity. Location, Task, Interest, Expertise and
Preference are sub-concepts of Contextual Element. In this
view, we only have metadata, we do not show instances.

To create a simple yet extensible model, we defined diverse
CEs that could be useful in different kinds of applications. The
CEs may be divided into three views: (i) general query
personalization concepts, (ii) environment concepts and, (iii)
personal concepts. Regarding the first one, we consider the
user task at hand (in our case, it means a given query), the user
identification, his interests (e.g., hobbies or work-related
interests) and his specific preferences related to the task at hand
(i.e., to a query). Environment concepts regard the setting
where the user interacts and the application is executed. In this
view, we have primarily chosen the following CEs: the user
location (his current geographical position), the kind of
connection (his IP address identification), the device at hand
and the kind of interface the user is interacting with (e.g.,
textual, visual). In addition, depending on the kind of
application (e.g., e-commerce), the expertise, the group which
the user belongs to as well as his personal information such as
email or birth date are also considered. Although we have
defined these three views, the CODI-User ontology may be
extended through inheritance and the addition of more
concepts, as well as concept instantiation according to the
application needs.

B. The CODI4In Service

We have been working on a service concerned with the
storage and retrieval of the CEs. The CODI4In service has been
defined as a plugin in such a way that query answering
applications can be coupled to it. Thus, it operates as a back-
end service of a query answering application which works as
the front-end. It supports the persistence and recovery of CEs
related to an identified user that interacts with the coupled
application. The various user CEs (e.g., location, interests,
preferences) required to build the user model are stored as
ontology instances in the CODI-User database. The CODI4In
populates such ontology and retrieves the CEs when required to
identify the user, to build the user model or to personalize a
given query.

III. CODI4IN – IMPLEMENTATION AND RESULTS

In this section, we present some implementation issues and
experimental results obtained with real users’ evaluation.

Figure 1. Overview of some CEs for the USER domain entity

1 http://protege.cim3.net/cgi-bin/wiki.pl?OntoViz#nid6CS

A. Implementation Issues

We have developed the CODI4In plugin in Java. Since our
representation model is an ontology, we have used as the
storage model a graph-based database2. This database stores the
CEs and user instances as the nodes and relationships of a
graph, what allows preserving the structure of the CODI-User.
We have also implemented a web-based application, named
MovieShow, to be coupled to the CODI4In. This application
allows users to submit queries about movies. Movies data were
imported from the IMDB3. Since this coupling is indeed an
initial case study, we have let the plugin usage as optional, i.e.,
the user can enable or disable the CODI4In service.

In the MovieShow application, the user is required to
register. When logged in the application, the CODI4In builds
the user model (nodes and relationships) in memory and
enables the CEs both to be used in query personalization and to
be updated by the ongoing user interactions. The user can then
accomplish the following tasks: (1) Set preferences: the user
defines his preferences regarding the movies genre; (2) Submit
a query without the CODI4In – in this case, the MovieShow
works lonely, without considering CEs in query execution; (3)
Submit a query with the CODI4In – in this option, the gathered
answers obtained from the local database (with movies data)
will be ranked according to the genre preferences set by the
user and persisted as CEs.

As an illustration, consider two users named Mary and
John. After logging the application, the CODI4In builds their
models in memory with the main CEs that have been persisted
earlier. Although Mary and John are generally interested in
movies, they have different preferences regarding genre. Thus,
they define a priority order of interest in terms of genre, as
follows: Mary likes Comedy, Drama and Animation, in this
priority order; John, on the other hand, prefers Animation,
Comedy and Drama, in such order.

Suppose now the users submit the same query about movies
starred by the actor Samuel L. Jackson. Fig. 2 shows snapshots
from the application with the set of answers for the user Mary
and John, respectively. In this example, we can verify that the
answers are ranked according to the preferences set by each
user. Thus, Mary firstly receives as query answers comedy
movies while John receives Animation ones. The other kinds of
genre presented follow the priority order defined by each one.
If a retrieved genre does not match the list of preferences set by
a user, it comes at the end of the list.

�������	
���
�
�
���
�������

�������	
���
�
�
���
����
�	

Figure 2. Personalized (Ranked) Query Answers for Users Mary and John

2 http://neo4j.org/
3 http://www.imdb.com/

334334

Although this is a simple example, we can observe that the
CODI4In changes the original query algorithm by integrating a
restriction obtained using the identified CEs (in this example,
the genre priority order). As a result, data presented to the user
are ranked according to each specific user model (i.e., to the
related identified CEs). This implementation may be extended
to consider other CEs related to queries, thus providing more
specific personalization.

B. Experiments

We have conducted some experiments to verify the
effectiveness of our approach. The goal is to check if enabling
the CODI4In plugin would provide benefits in terms of query
answers relevancy and satisfaction. To this end, we have
invited some users (undergraduate Computer Science students
and people from other areas) to evaluate our prototype. We let
them interact with the MovieShow until they got used with it.

The evaluation was performed in the following steps: (i)
they defined preferences regarding movies genre and a priority
order of interest; (ii) they submitted queries without enabling
the CODI4In and, (iii) they enabled the CODI4In and then
submitted the same set of queries already done in step 2. In
steps 2 and 3, users defined their perception and feeling
regarding the obtained query results. Three measures were
required: Clarity, i.e., in which degree the answers were free of
ambiguity; Relevancy, i.e., in which degree the answers were
considered as pertinent with the query at hand and Satisfaction,
i.e., in which degree the answers fulfilled the required query.

As shown in Fig. 3, without context usage the degree of
clarity, relevancy and satisfaction were considered not so good.
On the other hand, with context usage, most users were very
satisfied with the results and defined as clear and relevant the
obtained answers. Users agreed that the CODI4In usage
benefits query answers according to the identified preferences
which are dealt with as CEs.

The evaluation also pointed out some problems concerned
with response time. That is due to the volume of contextual
data that can exist for each user. We are already working on
optimizing the algorithm for this.

 In summary, we could confirm that not only
personalization is highly essential, but also that our techniques
are promising to proceed.

IV. RELATED WORK

Query personalization techniques have been tackled in
diverse environments. Koutrika and Ioannidis [5] provide
query personalization in databases based on user profiles.
Stefanidis et al. [6] provide a recommendation system that
expands query results according to user preferences. Arruda et
al. [7] implemented a query module in a PDMS that enables
query personalization at query reformulation time. The CareDB
project [8] addresses the goal of embedding context and
preference-aware query processing within a database system.

Comparing these works with ours, most of them deal with
user profiles, and some of them with some kind of context
information. In our work, we provide a model to be used in any
context management solution, through an ontology.

Figure 3. Experimental Results Summarization

Besides, we are mainly concerned with providing a plugin
to be coupled to any query answering application. Using the
CODI4In plugin, the front-end application does not need to
take care about the user context management.

V. CONCLUSIONS AND FURTHER WORK

In data-oriented settings, the semantics surrounding queries
is rather important to produce answers with more relevance
according to users’ context and needs. In this work, we
presented a user context management approach which includes
a representational model and a context-aware service named
CODI4In. The representation model has been defined as an
ontology (CODI-User) which is used to maintain the acquired
CEs related to a user. CODI4In provides the persistence and
recovery of the manipulated user context. It has been
developed as a plugin which may be coupled to any query
answering system. To verify its effectiveness, we have
accomplished a case study where the CODI4In has been
coupled to a query answering application (MovieShow).

Currently, we are interested in combining preferences with
other CEs and see what kind of benefits can be gathered when
considering them in conjunction. We will also include
reasoning processes to enhance the obtained results.

REFERENCES
[1] L. Tanca, C. Bolchini, E. Quintarelli, F. Schreiber, G. Orsi, “Problems

and Opportunities in Context Based Personalization”. In Proceedings of
the VLDB Endowment, Vol. 4, No. 11, pp. 1 – 4. PersDB, 2011.

[2] A. Dey, “Understanding and Using Context”. Personal and Ubiquitous
Computing Journal, vol. 5 (1), pp. 4-7, 2001.

[3] V. Vieira, P. Tedesco, A.C. Salgado, “Designing Context-Sensitive
Systems: An Integrated Approach”. Expert Systems with Applications,
vol. 38(2), pp.1119-1138, 2010.

[4] D. Souza, R. Belian, A.C. Salgado, P. Tedesco, “Towards a Context
Ontology to Enhance Data Integration Processes”. In: Proceedings of the
4th ODBIS (VLDB) , pp. 24-30. ODBIS, Auckland, 2008.

[5] G. Koutrika, Y. Ioannidis, “Personalized Queries under a Generalized
Preference Model”. In: 21st Intl. Conf. On Data Engineering (ICDE), pp:
841 – 852. Tokyo, 2005.

[6] K. Stefanidis, M. Drosou, E. Pitoura, “You May Also Like Results in
Relational Databases”. In: Proceedings of the 3rd International
Workshop on Personalized Access, Profile Management and Context
Awareness in Databases (PersDB 2009), Lyon, 2009.

[7] T. Arruda, D. Souza, A.C. Salgado, “PSemRef: Personalized Query
Reformulation based on User Preferences”. In: 12th International
Conference on Information Integration and Web-based Applications &
Services (iiWas2010), pp. 681-684. Paris, 2010.

[8] J. Levandoski, M.M. Khalefa, “The CareDB Context and Preference-
Aware Database System”. In: Proceedings of the International
Workshop on Personalized Access, Profile Management, and Context
Awareness in Databases. PersDB, Seattle, 2011.

335335

